A Stochastic Framework for Object Localisation
نویسندگان
چکیده
We describe a Bayesian architecture to estimate the position and pose of a 3D object. The system starts with knowledge of the 3D structure of the object and the prior probability distribution of its position and orientation in the workspace. This information is used to guide the search for focus features in the image, and the information recovered from the image processing is used to reene the estimates of the x-y position and pose of the object. The results of intermediate stages of processing is propagated using a Bayesian methodology. After iteration around the network, the peaks of the nal probability distributions are used to estimate the position and pose, and the widths of the distributions provide a measure of conndence. The results of the study suggest that grey-level image processing algorithms and a simple 3D model, embedded in a Bayesian statistical reasoning architecture can provide a highly eeective, albeit specialised object localisation system.
منابع مشابه
Modeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملModeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism
In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملStochastic Congestion Management Considering Power System Uncertainties
Congestion management in electricity markets is traditionally done using deterministic values of power system parameters considering a fixed network configuration. In this paper, a stochastic programming framework is proposed for congestion management considering the power system uncertainties. The uncertainty sources that are modeled in the proposed stochastic framework consist of contingencie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996